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Classical field theory is the branch of mathematical physics dealing with non-quantized fields as
representations of physical objects. The first historical motivation for using fields was Maxwell’s
theory of electromagnetism, which led to the development of various relativistic theories in the
field formalism. This seminar first introduces the mathematical notion of field, and how it can be
connected to physics through Lagrangians. The consequences of field symmetries are investigated,
beginning with Noether’s theorem and leading to the idea of gauge fields and covariant derivatives
as the best mathematical description of fundamental interactions. The relation of classical field
theory with relativistic quantum mechanics and general relativity is discussed, although no previous
knowledge of these domains is assumed.

INTRODUCTION

Physics is historically the study of material points and bodies with finite extension. Newtonian mechanics describes
the world in terms of a countable set of degrees of freedom. This vision seemed to culminate with quantum mechanics,
which even quantizes energy and other physical observables that are classically considered continuous. In opposition,
Maxwell’s theory of electromagnetism finds the origin of the Lorentz force in physical fields, defined everywhere and
representing a continuous infinity of degrees of freedom. At the same time, when trying to quantize the motion of
relativistic particles, there seems to be no choice but to describe their classical motion, not with discrete coordinates,
but with fields.

Classical field theory, the study of non quantized fields on a manifold, thus naturally emerges from relativistic
theories (electromagnetism, relativistic quantum mechanics and general relativity). A gauge-theoretic argument on
the subject can be found in appendix D.

One of the main motivations for the study of classical fields (the only ones we discuss here) is that it is a necessary
first step before building a quantum field theory. The quantization of classical field theories stands among the main
problems of contemporary mathematical physics.

Section I is an initiation to the mathematics of manifolds, fiber bundles and fields. Most of the concepts are given as
keys towards a further exploration of the subject, but are not needed in the subsequent sections. Section II introduces
fields as tools for writing physical theories through the Lagrangian formalism. Noether’s theorem for fields is derived,
while conserved currents and charges are discussed. Section III discusses gauge theories and covariant derivatives in
connection with general relativity and quantum field theory.

Throughout this seminar, we use natural units where c = ℏ = 1. Readers should be familiar with tensor calculus,
Ricci notation, and Einstein’s summation convention [1].

I. MANIFOLDS AND FIELDS

A. The tangent bundle

Morally, a manifold is a set of points with topological properties nice enough to represent the world we live in. A
curve, or a napkin, are illustrative examples of manifolds. A topological manifold is a set in which continuous paths
can be drawn, and a differentiable manifold is a set in which differentiable paths can be drawn. Formal definitions
can be found in appendix A.

Let A be a point in a differentiable manifold M . To each differentiable path γ passing through A, we can associate
a tangent vector at A, representing the “velocity” of a particle taking the path γ. The set of all possible tangent
vectors at A forms a vector space called the tangent space at A, and noted TAM . On a given manifold, all tangent
spaces are isomorphic, and hence have a common dimension termed the dimension of the manifold itself.

For example, the tangent spaces to a curve are simply its tangent lines, which are 1-dimensional vector spaces. A
curve is thus a 1-dimensional manifold. The tangent spaces to a napkin are its tangent planes, and thus a napkin is a
2-dimensional manifold. Note that a manifold needs not belong to a higher-dimensional space for its tangent spaces
to be well defined.
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Of course, tangent spaces are of primary importance. They allow us to use linear algebra on a manifold although
no operation on manifold points is naturally defined (we cannot add, subtract or multiply two points, for instance).
This raises another problem: we can only add vectors that belong to the same tangent space (vectors that are defined
at the same point A). Yet, we want to compare vectors at A and vectors at B (to integrate a vector field over a path
from A to B, for instance). As is explained in appendix A, this is made possible by using transition maps between
coordinate charts. Considering two path-connected points A,B, there is a (possibly infinite) sequence of intersecting
neibourghoods and transition maps that allow us to compare vectors between A and B.

This construction containing the manifold and all its tangent spaces is called the tangent bundle. By choosing a
reference frame in each tangent space, we define local reference frames (called vielbeins) for the manifold. If M is the
spacetime of general relativity, a local basis would be a vierbein (vier = 4) (eµ)0≤µ≤3.

B. Fields on a manifold

The tangent bundle is a special case of a more general construction. We can associate to each point A ∈ M a set
of some kind (called the fiber at A) such that all fibers are isomorphic in some sense. The collection consisting of
M and all its fibers is a known as a fiber bundle. Choosing an element in each fiber in a continous way yields a
section of the fiber bundle.

If the fibers are affine spaces, we get an affine bundle, if the fibers are principal homogeneous spaces, we get a
principal bundle. If the fibers are vector spaces (as in the tangent bundle), then we get a vector bundle. Considering
a vector bundle, we can construct linear forms, endomorphisms and more generally (p, q)-tensors on each of its fibers.
The tensor algebras at each point are of course isomorphic since all fibers are isomorphic. We then define the tensor
bundle as the fiber bundle having tensor algebras as fibers.

A vector field is a section of the tangent bundle, that is, a choice of vector in each tangent space. A tensor field is
a section of the tensor bundle formed on the tangent bundle, that is, a choice of tensor on each tangent space.

The dual space to a tangent space TAM is known as the cotangent space T ∗
AM , and the cotangent spaces together

form the cotangent bundle. A section of the cotangent bundle (a choice of linear form on each tangent space) is called
a differential 1-form. From these, we generate the exterior algebra of differential forms through rules specified in
appendix B. We can define local reference frames for 1-forms by choosing a reference frame in each cotangent space.
If M is the spacetime of general relativity, a local basis of 1-forms would be written (dxµ)0≤µ≤3.
Moreover, we can endow the manifold with a metric by imposing a metric tensor, i.e. a symmetric (0,2)-tensor

field gµν = eµ · eν . The manifold is said to be Riemannian if its metric is positive-definite at each point. It is pseudo-
Riemannian if we only require it to be non-degenerate (that is, invertible). A Lorentzian manifold of dimension d is a
pseudo-Riemannian manifold whose metric has signature (1, d− 1). The spacetime of general relativity is Lorentzian,
with a metric of signature (1, 3).

C. Index conventions

Lower-case Greek indices run over spacetime. The number and position of these indices refer to the type of the
tensor field: a scalar field is written ϕ, a vector field ϕµ, a covector field ϕµ, an endomorphism field ϕµν , etc.
However, we also want to work with tensor fields of arbitrary rank, type and number. We thus write arbitrary fields

ϕΣ, where Σ is a multi-index. For instance, if ϕµν is a real (1,1)-tensor field, then Σ = (µ ν), and hence ϕΣ = ϕ ν
µ and

ϕΣψΣ = ϕµνψ
ν

µ . If we have two real fields ϕµ1 , ϕ
ν
2 , then ϕ

Σ = (ϕµ1 , ϕ
ν
2), ϕΣ = (ϕ1µ, ϕ2ν) and (assuming also two fields

ψµ
1 , ψ

ν
2 ) ϕ

ΣψΣ = ϕµ1ψ1µ + ϕν2ψ2ν .
Complex fields are handled in the same manner: if ϕµ is a complex vector field, then ϕΣ = (ϕµ, ϕ∗µ), ϕΣ = (ϕ∗µ, ϕµ)

and ϕΣψΣ = ϕµψ∗
µ + ϕ∗µψµ. Multi-indices are upper-case Greek indices.

II. LAGRANGIANS AND SYMMETRIES

From now on, we model spacetime as a 4-dimensional Lorentzian vector space M (Minkowski space). All the
results in this section are readily generalizable to a 4-dimensional Lorentzian manifold through a procedure outlined
and justified throughout section III.

A Lagrangian is a function L of the system’s coordinates and velocities, such that the action functional S =
∫
dt L

is stationary for the physical trajectory. If there is a continuous infinity of coordinates, then the system is described
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by a field ϕΣ, and we had better define the Lagrangian density L(ϕΣ, ∂µϕΣ) such that L(ϕΣ, ϕ̇Σ) =
∫
d3xL(ϕΣ, ∂µϕΣ),

and thus S[ϕΣ] =
∫
d4xL(ϕΣ, ∂µϕΣ).

The Lagrangian density is now a function of the field ϕΣ and its derivatives ∂µϕ
Σ, which are independent variables

because they are taken at one given point. L should not depend on higher derivatives of ϕΣ because else we would
need more boundary conditions to solve the equations of motion, and such conditions are considered unphysical. In
practice, the Lagrangian L is never used, and we will simply call “Lagrangian” the Lagrangian density L (I deeply
regret it, but this is standard practice).

Let us vary the action with respect to the field ϕΣ. We consider a transformation ϕΣ 7→ ϕΣ + δϕΣ where δϕΣ is a
“small” and “smally varying” field. Then, for arbitrary ϕΣ, δϕΣ and integration domain D:

δS
def
= S[ϕΣ + δϕΣ]− S[ϕΣ]

=

∫
D

d4x
[
L(ϕΣ + δϕΣ, ∂µϕ

Σ + ∂µδϕ
Σ)− L(ϕΣ, ∂µϕΣ)

]
=

∫
D

d4x

(
∂L
∂ϕΣ

δϕΣ +
∂L

∂∂µϕΣ
∂µδϕ

Σ

)
=

∫
D

d4x

(
∂L
∂ϕΣ

− ∂µ
∂L

∂∂µϕΣ

)
δϕΣ +

∫
D

d4x ∂µ

(
∂L

∂∂µϕΣ
δϕΣ

)
(1)

where we have integrated by part between the third and the fourth lines.
By definition of the action, the physical field ϕΣ satisfies the stationary action principle: if D =M (the whole

spacetime), then δS[ϕΣ] = 0 (beware: δS does not necessarily vanish for any domain of integration, only for D =M).
Now, a continuous symmetry is a group of transformations ϕΣ 7→ ϕΣ+δϕΣ such that δS =

∫
D
d4x ∂µK

µ(ϕΣ, ∂µϕ
Σ)

for some function Kµ(ϕΣ, ∂µϕ
Σ) and for arbitrary ϕΣ and D. Moreover, consistency with the stationary action prin-

ciple requires
∫
M

d4x ∂µK
µ = 0. A symmetry is thus a transformation that leaves the total action invariant.

A. Symmetries and conserved currents

We will now use the very general result of eq. (1) to demonstrate two results. Please be very careful, the two proofs
are analogous but different.

1. Euler-Lagrange equations. Let us assume the stationary action principle: if we choose D = M then there
is a physical field ϕΣ such that δS = 0. We also choose δϕ to be compactly supported, hence zero at infinity, which
makes the surface term in eq. (1) vanish, leading to:

∫
M

d4x

(
∂L
∂ϕΣ

− ∂µ
∂L

∂∂µϕΣ

)
δϕΣ = δS = 0 (2)

This is true only for our particular choice of ϕΣ and D =M , but also for arbitrary compactly supported δϕΣ, so:

∂L
∂ϕΣ

= ∂µ
∂L

∂∂µϕΣ
Euler-Lagrange equations (3)

This result is independent of the choice of an integration domain (since there is no integration anymore) and of the
choice of δϕ (since there is no δϕ anymore).

2. Noether’s theorem. Let us now choose ϕΣ to be the physical field. We can use our first proof and insert the
Euler-Lagrange equations in eq. (1), but this time the domain of integration remains arbitrary, so the surface term
does not vanish:

δS =

∫
D

d4x ∂µ

(
∂L

∂∂µϕΣ
δϕΣ

)
(4)

If we choose moreover our transformation ϕΣ 7→ ϕΣ + δϕΣ to be a symmetry, then δL = ∂µK
µ, so:



4

0 =

∫
D

d4x ∂µ

(
∂L

∂∂µϕΣ
δϕΣ −Kµ

)
︸ ︷︷ ︸

def
= Jµ

(5)

This is true only for our particular choice of ϕΣ and δϕΣ, but also for arbitrary D, so:

∂µJ
µ = 0 Continuity equation (6)

Therefore, to each symmetry of the action, a conserved current (or Noether current) Jµ is associated, and eq. (5)
gives the explicit expression of the current. This is the (first) Noether theorem. Integrating the continuity equation (6)
over space yields:

0 =

∫
d3x

(
∂J0

∂t
+∇ · J⃗

)
=

d

dt

∫
d3xJ0︸ ︷︷ ︸
def
=Q

+

∮
d2S⃗ · J⃗︸ ︷︷ ︸
→
∞

0

(7)

because the current J⃗ is supposed to vanish at infinity. Then, Q is called the conserved charge (or Noether charge).
Whereas Noether currents are locally conserved, Noether charges are only globally conserved.

B. The stress-energy tensor

Action symmetries are usually classified into internal symmetries acting on the fields (as we did in the previous
section) and external symmetries acting on the coordinates. However, the action is a functional of the fields, not a
function of the manifold coordinates. Therefore, any external symmetry can be recast as an internal one [2].

Translations are the simplest example of external symmetries. They are transformations of the form:

x′µ = xµ + aµ (8)

This can be easily recast as a field transformation:

ϕ′Σ(x) = ϕΣ(x− a) (9)

Let us compute δϕΣ, the infinitesimal field transformation:

δϕΣ = ϕ′Σ(x)− ϕΣ(x) = −aµ∂µϕΣ (10)

The infinitesimal Lagrangian transformation is then:

δL =
∂L
∂ϕΣ

δϕΣ +
∂L

∂∂µϕΣ
∂µδϕ

Σ = −aν
(
∂L
∂ϕΣ

∂νϕ
Σ +

∂L
∂∂µϕΣ

∂µ∂νϕ
Σ

)
= −aν∂νL (11)

by applying the chain rule. Thus δL is a total derivative, which shows that translations are symmetries of the
action, with Kµ = −aµL. We can use eq. (5) to compute the associated Noether currents:

Jµ =
∂L

∂∂µϕΣ
aν∂νϕ

Σ − aνδµνL (12)

Since a is an arbitrary vector in this expression, there are in fact four independent Noether currents, each associated
to translational invariance in one of the four spacetime directions:
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Tµ
ν =

∂L
∂∂µϕΣ

∂νϕ
Σ − δµνL (13)

then we have ∂µT
µ
ν = 0. T is called the stress-energy tensor. In particular, the Noether charge associated to

time translation is:

∫
d3xT 00 =

∫
d3x

∂L
∂ϕ̇Σ

ϕ̇Σ − L =

∫
d3xH (14)

where we have recognized the Legendre transform of the Lagrangian, which is the Hamiltonian, whose integral
yields the energy. Similarly, the three Noether charges associated to space translations yield the momentum vector.
In fact, energy and linear momentum can be defined as the Noether charges associated with translational symmetries.

III. GAUGE THEORIES

A gauge theory is a general procedure that takes a Lagrangian invariant under some global continuous transforma-
tions, and changes it into a Lagrangian invariant under local continuous transformations. That is, gauge theories are
a means to generalize a physical theory so that it satisfies stronger physical requirements, at the price of introducing
new degrees of freedom in the form of gauge fields.

To study gauge theories, we will use the complex Klein-Gordon field, a classical scalar field governed by the Klein-
Gordon Lagrangian:

L = ∂µϕ∂µϕ
∗ −m2ϕϕ∗ (15)

Originally, the Klein-Gordon field was thought of as a relativistic wavefunction, which is strange since we only
deal here with classical fields. De facto, interpreting the Klein-Gordon field as a wavefunction leads for example to
the Klein paradox, and to negative energy solutions that are difficult to understand. On the contrary, if we see this

field as classical, then we must still quantize it by replacing ϕ(x) by an operator field ϕ̂(x). This is the object of
quantum field theory, which solves the Klein paradox and reinterprets the negative energy solutions as antiparticles
with positive energy. The relativistic nature of the theory seems to forbid the description of quantum systems by
wavefunctions (even the Hamiltonian is not a covariant quantity!) and replaces them with quantum fields whose
physical interpretation is unfortunately not so straightforward. The Klein-Gordon classical field ϕ(x) only provides

a classical approximation to the associated quantum field ϕ̂(x). Because the Klein-Gordon equation is obtained by
a first “naive” quantization procedure (described in appendix C), quantum field theory is said to perform a “second
quantization”.

An introductory example set in the context of Newtonian mechanics can be found in appendix D, where Bour’s
formula and inertial forces are derived by gauging Galilean dynamics.

A. The U(1)-invariance of the Klein-Gordon equation

First, we want to show that the Klein-Gordon Lagrangian is invariant under global U(1) transformations, that is
under the mapping:

ϕ(x) 7→ e+iαϕ(x) ; ϕ∗(x) 7→ e−iαϕ∗(x) where α is some real constant. (16)

The proof is straightforward: since α is a constant, the exponential factors can be pulled out of the derivatives, and
thus cancel each other. This invariance leads to a Noether current that can be computed with the infinitesimal field
variation δϕ = iαϕ:

Jµ =
∂L
∂∂µϕ

δϕ+ c.c. = iα(ϕ∂µϕ∗ − ϕ∗∂µϕ) (17)
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Now, imagine we want the Klein-Gordon Lagrangian to be invariant under local U(1) transformation, that is under
the mapping:

ϕ(x) 7→ e+iqα(x)ϕ(x) ; ϕ∗(x) 7→ e−iqα(x)ϕ∗(x) where α(x) is some real field and q some real constant. (18)

The mass term is still invariant, but the kinetic term becomes (to first order in α):

∂µϕ∂µϕ
∗ 7→ ∂µϕ∂µϕ

∗ + iqϕ∂µα∂µϕ
∗ − iqϕ∗∂µα∂µϕ (19)

Thus, to ensure local invariance of L, we modify the Lagrangian by adding a new field Aµ(x) which transforms
under U(1) such that Aµ 7→ Aµ + ∂µα:

L def
= (∂µϕ− iqAµϕ)(∂µϕ

∗ + iqAµϕ
∗)−m2ϕϕ∗ (20)

This is the new, gauge invariant Lagrangian. Hence, the so-called gauge field Aµ absorbs the unwanted terms that
appear during a U(1) local transformation (called a gauge transformation in this context). Since the necessity of this
procedure came from the derivative, the Lagrangian can be cleverly rewritten in terms of the covariant derivative:

Dµ
def
= ∂µ − iqAµ (21)

L = Dµϕ(Dµϕ)
∗ −m2ϕϕ∗ (22)

In fact, all equations of a gauge theory can be found by formally replacing all partial derivatives with the corre-
sponding covariant derivatives.
But this Lagrangian is still incomplete. Indeed, we need to add a kinetic term describing the dynamics of the gauge

field, which is indeed a new degree of freedom. This new term must not contain any other field than the gauge field
itself (else it would be an interaction term) and it must be gauge invariant. The only possible field respecting these
constraints is the field strength tensor:

Fµν = ∂µAν − ∂νAµ (23)

which must be twice contracted to yield a scalar, leading to the following Lagrangian:

L = Dµϕ(Dµϕ)
∗ −m2ϕϕ∗ − 1

4
FµνFµν (24)

Let us compute the associated Euler-Lagrange equations:

∂µ
∂L

∂∂µAν
= −∂µFµν (25a)

∂L
∂Aν

= −iq(ϕ(Dνϕ)∗ − ϕ∗Dνϕ) = −Jν (25b)

hence ∂µF
µν = Jν where Jν is the Noether current associated with gauge invariance.

But Aν , as a covector field, is also a differential 1-form (see appendix B) called the connection form, and the field
strength tensor is nothing but its exterior derivative, called the curvature form in this context:

A = Aν dx
ν (26)

F = dA = (∂µAν) dx
µ ∧ dxν =

∑
µ>ν

Fµν dx
µ ∧ dxν (27)

dF = d2A = 0 ⇒ (∂σFµν) dx
σ ∧ dxµ ∧ dxν = 0 (28)

This last equation means that the (∂σFµν) are zero under the condition that σ, µ, ν have different values. This can
be rewritten ερσµν∂σFµν = 0. Together, the equations
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∂µF
µν = Jν (29a)

ερσµν∂σFµν = 0 (29b)

are Maxwell’s equations, and the Noether current Jµ appears as the electric 4-current! Equation (24) is therefore
described as the Lagrangian of scalar electrodynamics. Aµ is the 4-potential, and represents the photon field in the
particle-theoretic point of view. The electromagnetic interaction is said to be mediated by photons.

Hence, just by imposing some local invariance on the free Lagrangian, we have derived Maxwell’s electromagnetism.
In the context of high-energy physics, gauge theories seem to be the correct way to obtain all fundamental interactions.
This is developed in the next subsection.

B. Yang-Mills theories

Although we used the Klein-Gordon field in the last subsection, most particles of interest in high-energy are fermions
(electrons, quarks...), and are thus described by spinors satisfying the Dirac equation:

L(ψ, ∂µψ) = iψ ̸∂ ψ −mψψ (30)

where ψ is a 4D vector (a Dirac spinor, in fact, but let us not dwell on that), ̸ ∂ def
= γµ∂µ is the Feynman-slashed

derivative with the four Dirac matrices γµ, ψ
def
= ψ†γ0 is the Dirac conjugate, and m is the mass again.

The Dirac Lagrangian is globally U(1)-invariant too, and it can be made locally U(1) invariant by following the
same steps as in the previous section. This leads to Maxwell’s electromagnetism in the case of spin 1/2 particles.
Once quantized, the corresponding theory is known as quantum electrodynamics.

The procedure can be generalized to SU(n) invariance in the following way. Let us consider n ≥ 2 free Dirac fields
with the same mass m:

L(ψa, ∂µψ
a) = iψ1 ̸∂ ψ1 −mψ1ψ1 + iψ2 ̸∂ ψ2 −mψ2ψ2 + · · · = iψa ̸∂ ψa −mψaψ

a (31)

where a is an index running over the various fields (a = 1, . . . , n). Then, (ψa)1≤a≤n is a vector in n dimensions.
We can apply a SU(n) transformation to this vector, and the Lagrangian (31) is invariant under such a global
transformation.

Again, we can impose L to be locally invariant under SU(n) by introducing a suitable covariant derivative, resulting
in a Yang-Mills theory. However, because the group SU(n) is not Abelian, several gauge fields are needed to define
the covariant derivative [3]. Indeed, the gauge fields appear in order to compensate terms coming from the derivative
of the gauge transformation. Any local transformation U(x) ∈ SU(n) can be written in the form U(x) = eiH(x), where
H(x) is a hermitic operator. Because it can be used to generate an element of SU(n), H is said to belong to the Lie
algebra su(n) associated with SU(n). The Lie algebra is a vector space of dimension n2 − 1, which means the Lie
group SU(n) admits n2 − 1 independent generators Ta ∈ su(n) (such that H(x) = λa(x)Ta). Each generator Ta yields
a term in the derivation of U , and thus must be compensated by a gauge field. Abelian groups like U(1) only have
one degree of freedom, i.e. only one generator.

Because of non-Abelianity, eq. (23) is modified by additional terms containing several gauge fields (details can be
found in appendix E). Physically, this introduces interactions between the mediating bosons.

For instance, local SU(3) invariance introduces 32 − 1 = 8 gauge fields, identified as the eight gluons (each carrying
a different colour charge), which mediate the so-called strong interaction responsible for the formation of hadrons
from quarks. Unlike photons, gluons interact with other gluons, a consequence of the non-Abelianity of Yang-Mills
theories. The three fermionic fields ψ1, ψ2, ψ3, upon which the gauge group acts, are the same quark with different
colour charges (usually called red, blue and green). It works since changing the colour of a quark does not change its
mass. This theory is called chromodynamics.

The SU(2) Yang-Mills theory contains 3 gauge fields but does not represent any known physical interaction. How-
ever, the locally U(1) × SU(2)-invariant Dirac Lagrangian yields 4 gauge fields (1 for U(1) and 3 for SU(2)) whose
linear combinations are the photon, the Z, the W+ and the W− bosons (the gauge fields and the mediating bosons
are here two different bases of the same state space). This is the Glashow-Weinberg-Salam electroweak theory.

The quantization of these classical theories can be performed by Feynman calculus in the perturbative regime, when
the interaction constant is small. However, finding a general quantization procedure for Yang-Mills theories remains
an open problem in mathematical physics.
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C. The general gauging procedure

Gauge theories can be summarized into an (almost) simple recipe:

1. Take a free Lagrangian possessing some global symmetry.

2. Identify the gauge fields (connection form) as the generators of the Lie algebra associated with the symmetry
group.

3. Replace all derivatives with covariant derivatives formed by adding some kind of product between the gauge
field and the field under study.

4. Compute the field strength tensor (curvature form) associated with the gauge fields.

5. Constrain the gauge fields by adding a kinetic term formed from the field strength tensor (to ensure its gauge-
invariance).

Appendix E gives general expressions for each of the steps not previously discussed.

D. General relativity as a gauge theory

Special relativity is invariant under global coordinate changes, while all coordinate changes are unphysical. In other
words: we have a theory on flat spacetime, how do we change our derivatives to take curvature into account? Let us
compute the differential of a vector v = vµeµ.

dv = d(vµ) eµ + vµ d(eµ) = ∂νv
µ dxν eµ + vσ∂νeσ dx

ν

= (∂νv
µ + vσΓµ

σν) dx
ν eµ

(32)

where Γµ
σνeµ

def
= ∂νeσ defines the Christoffel symbols of the second kind. Together, they form a connection on the

spacetime manifold. They can be computed from the metric gµν :

Γλ
µν =

1

2
gλρ(∂νgρµ + ∂µgρν − ∂ρgµν) (33)

So because we want to use any coordinate frame, and not only inertial frames, we must use the following covariant
derivative:

Dνv
µ = ∂νv

µ + vσΓµ
σν (34)

From there, we can compute the curvature form, known as the Riemann tensor in this context:

Rα
βγδ

def
= ∂γΓ

α
βδ − ∂δΓ

α
βγ + Γα

σγΓ
σ
βδ − Γα

σδΓ
σ
βγ (35)

The dynamics of spacetime is thus given by an equation formed from the Riemann tensor. For brevity, we introduce
the Ricci tensor and the Ricci scalar:

Rµν
def
= Rα

µαν ; R
def
= Rµ

µ (36)

The most general equation formed from the metric, its first derivatives, and linear in its second derivatives, is then
the Einstein field equation:

Rµν − 1

2
gµνR+ Λgµν = 0 (37)

which is the fundamental equation of general relativity. The cosmological constant Λ has been the subject of much
discussion since it governs the expansion of the universe.
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Appendix A: Mathematical complement on differentiable manifolds

A topological space is a set in which the neighbourhoods of all points have been specified. Equivalently, a
topological space is a set in which we know what are the open and closed subsets. This defines a notion of “closeness”
between the points of the set, but not necessarily a metric (metric spaces are topological spaces, but the converse is
not true). A T2-separated, or Hausdorff space is a topological space in which two distinct points necessarily have
disjoint neighbourhoods (all metric spaces are Hausdorff, but the converse is not true). This guarantees the unicity
of limits: in a non-Hausdorff space, a sequence can converge towards two distinct points at the same time.

A homeomorphism ψ between two sets U, V is a continuous bijection ψ : U → V whose reciprocal bijection
ψ−1 : V → U is also continuous.
A topological manifold is a Hausdorff space such that every point has a neighbourhood (called a Euclidean

neighbourhood) that is homeomorphic to an open subset of Rn (a topological manifold is thus said to be locally
Euclidean). These homeomorphisms ψU : U → ψU (U) ⊂ Rn define coordinate charts that can be used to param-
eterize the points in Euclidean neighbourhoods. A set of Euclidean neighbourhoods that cover the entire manifold,
together with their corresponding coordinate charts, is termed an atlas. Given two Euclidean neighbourhoods U, V
with non empty intersection and their coordinate charts ψU , ψV , there is a transition map f that takes the co-
ordinate of a point x ∈ U ∩ V and maps it to its coordinate in the other chart f : ψU (x) 7→ ψV (x). f is then a
homeomorphism. These transition functions allow us to connect the different Euclidean neighbourhoods, so their
properties are of primary importance if we want to do geometry on the manifold.

A differentiable atlas is an atlas in which all transition maps are differentiable. A differentiable manifold is
now a topological manifold endowed with a differentiable atlas. A Ck-atlas is an atlas in which all transition maps are
Ck, and a smooth atlas is an atlas in which all transition maps are C∞. Notions of Ck-manifold and smooth manifold
naturally arise from these definitions. All the manifolds we work with here are smooth.

Appendix B: Differential forms

A differential 1-form is a covector field. We can define local reference frames for 1-forms by choosing a reference
frame in each cotangent space (the dual space to the tangent space). If M is the spacetime of general relativity, then
we can define a local basis of 1-forms (dxµ)0≤µ≤3. A general 1-form is written:

A = Aµ(x) dx
µ (B1)

where x is a point on M (remember A is a covector field).
We can form the exterior product of two differential 1-forms to obtain a differential 2-form:

A ∧B = AµBν dx
µ ∧ dxν =

∑
µ<ν

(AµBν −AνBµ) dx
µ ∧ dxν = (AµBν −AνBµ) dx

|µν| (B2)

because the exterior product is associative and antisymmetric on 1-forms. dxµν is short for dxµ∧dxν , and the bars
|µν| denote summation over µ < ν. In general, a p-form is then a sum of exterior products of p 1-forms. If we note d
the dimension of the fiber, then differential forms only exist if p ≤ d because an exterior product of (d+1) 1-forms is
necessarily 0 since the exterior product is antisymmetric, and there are only d independent 1-forms.

We can also take the exterior derivative of a p-form A:

dA = ∂µAν1···νp
dxµ ∧ dxν1 ∧ · · · ∧ dxνp (B3)

So the exterior derivative also raises the degree of the differential form. Naturally, the 1-form dxµ is the exterior
derivative of the 0-form (scalar field) xµ.
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As a straightforward consequence of Schwartz’s theorem, the exterior derivative is nilpotent: d2A = 0 for any
differential form A.

Although it is more practical to define p-forms iteratively from 1-forms and the exterior product, they do have an
independent mathematical characterization as antisymmetric (0, p)-tensor fields.

Appendix C: Derivation of the Klein-Gordon Lagrangian

We are looking for a relativistic wave equation, so we begin with the relativistic mass-shell formula:

E2 = p2 +m2 (C1)

where E is the energy, p the 3-momentum andm the mass. Then we apply the quantization rule P̂µ = i∂µ, yielding:

−(∂0)
2 = −∇2 +m2 (C2)

which, when applied to a scalar field ϕ, is the Klein-Gordon equation:

(
∂µ∂µ +m2

)
ϕ = 0 (C3)

Now, if we take:

L = ∂µϕ∂µϕ
∗ −m2ϕϕ∗ (C4)

we obtain:

∂µ
∂L

∂∂µϕ∗
= ∂µ∂µϕ (C5)

∂L
∂ϕ∗

= −m2ϕ (C6)

and the Euler-Lagrange equation correctly reproduces the Klein-Gordon equation.

Appendix D: Covariant Newtonian dynamics

This appendix aims to provide a simple example of gauge theory in the context of classical mechanics. Here, the
manifold under study is 1-dimensional (it only represents time), and to each point on this manifold we associate a
vector space representing the Galilean reference frame in which we study the dynamics of our system (so we have a
vector bundle). The fields on the time manifolds are the functions of time. Therefore, even though we are dealing with
discrete coordinates, Newtonian dynamics is a 1-dimensional field theory on the time manifold, where the coordinate
vector q(t) of the point particle under study is our field. In this theory, we have the following free equation of motion:

d2q

dt2
= 0 (D1)

(For simplicity, the mass constant is absorbed in the coordinate vector.) This leads to the following Lagrangian:

Linertial(q) =
1

2

(
dq

dt

)2

(D2)

This Lagrangian is of course invariant under a global Special Euclidean transformation, i.e. it does not change if
at each point in time we rotate (or translate) the Galilean reference frame. A SE(3) infinitesimal transformation is
written:
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q 7→ q+α× q+ β (D3)

for some infinitesimal vectors α,β, respectively representing a rotation angle and a linear displacement. Using SE(3)
as our gauge group, we can try to impose local invariance on the Newton Lagrangian. Local must be understood here
in the context of the 1D time manifold, hence a local SE(3) transformation consists in making the transformation
parameters α,β depend on time. From the physical point of view, it means ours frames would not be Galilean
anymore, because the frame at some time t1 could be rotated with respect to the frame at t0, so the reference frame
must loose its “Galileanity” at some point between t0 and t1.

Under a gauge transformation, additional terms come out of the time derivative now that α and β depend on time:

L′
inertial(q) =

q̇2

2
+ (α̇× q) · q̇+ β̇ · q̇ (D4)

We introduce gauge fields ω(t),v(t) transforming as ω′ = ω − α̇ and v′ = v − β̇.

Lcovariant(q) =
q̇2

2
+ (ω × q) · q̇+ v · q̇ (D5)

This can be rewritten using the covariant derivative:

Dq

Dt

def
=

dq

dt
+ ω × q+ v (D6)

Lcovariant(q) =
1

2

(
Dq

Dt

)2

(D7)

which, when we add an external potential V (t), leads to Newton’s Covariant Second Law, valid in any reference
frame:

D2q

Dt2
= F (D8)

where F = −∇V is the external force. Developing the covariant derivative yields a kinetic term (of course) along
with the inertial forces that appear as a consequence of non-Galileanity.

The Lagrangian should be adequately modified to account for the gauge fields’ dynamics:

Lgauge(q) =
1

2

(
Dq

Dt

)2

− L · ω −P · v (D9)

where L,P are some constant vectors, leading to the following equations of motion:

q× Dq

Dt
= L ;

Dq

Dt
= P (D10)

which express the conservation of angular and linear momenta in non Galilean reference frames.
Thus, applying a gauge theory to Newtonian dynamics yields several results in a very elegant way:

1. the covariant derivative is a general case of Bour’s formula for changing the derivation frame;

2. the coupling of the gauge fields to the field q is just the inertial forces.

Of course, this is a non-relativistic theory. In a relativistic theory, time cannot be separated from space, and thus
we cannot use discrete coordinates (that is, a 1D field theory) as we did here, but we must use a 4D field theory where
space and time are on the same footing. This explains why field theory is the natural setting of relativistic theories.
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Appendix E: Details on the general gauging procedure

Let (M,E) be a vector bundle of base manifold M and fiber E. A symmetry group G acts on E, and its generators
Ta form a basis of the Lie algebra g. Greek indices run overM , Latin indices run over E and fraktur indices run over g.
The Lie algebra is endowed with a Lie bracket characterized by its structure constants f a

bc such that [Tb, Tc] = f a
bc Ta.

Each generator introduces a gauge field Ba
µ, and the exterior derivative reads:

Dµ
def
= ∂µ +Ba

µTa (E1)

The generators can be represented by matrices (Ta)
a
b acting on the fibers. We can introduce the connection ω, a

Lie algebra-valued 1-form which can be represented by a matrix of differential 1-forms defined by

ωa
b

def
= ωa

bµ dxµ
def
= Ba

µT
a

a b dx
µ (E2)

We can now apply the covariant derivative to a vector in E:

Dµv
a = ∂µv

a +Ba
µT

a
a b v

b = ∂µv
a + ωa

bµv
b (E3)

The exterior derivative also needs to be modified into an exterior covariant derivative. Let (Aa
b)1≤a,b≤dimE be

a Lie algebra-valued differential form, then:

DAa
b
def
= dAa

b + ωa
c ∧Ac

b (E4)

is the exterior covariant derivative of A. This equation is more compactly written DA = dA+ω∧A. The curvature
Ω

def
= Dω is a Lie algebra-valued 2-form. Using previous expressions, we get:

Ωa
b = dωa

b +
(
ωa

cµω
c
bν − ωa

cνω
c
bµ

)
dx|µν|

= dωa
b +

(
Ba

µT
a

a cB
b
νT

c
b b −Bb

νT
a

b cB
a
µT

c
a b

)
dx|µν|

= dωa
b +Ba

µB
b
ν (T

a
a c T

c
b b − T a

b c T
c

a b ) dx
|µν|

=
(
∂µω

a
bν − ∂νω

a
bµ +Ba

µB
b
ν [Ta, Tb]

a
b

)
dx|µν|

=
(
∂µB

a
ν − ∂νB

a
µ +Bb

µB
c
νf

a
bc

)
T a
a b︸ ︷︷ ︸

def
=Ωa

bµν

dx|µν|

(E5)

where the field strength tensor Ωa
bµν is obtained from the components of Ω.

Finally, let us recall the second Bianchi identity, which is sometimes useful:

DΩ = 0 (E6)
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