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What we know :

+ Classical mechanics &/ E

+ Schrddinger quantum mechanics

What we want :

+ Express quantum mechanics in
phase space
+ Study the quantum-classical

correspondence




istory

Foundations (~ 1930) :

Figure 1 - Hermann Weyl (1885-1955) Figure 2 - Eugene Wigner (1902-1995)
Weyl quantization Quantum corrections to classical
Phase space variables thermodynamic

¢ ¢

Weyl (symmetric) ordered observables Wigner function and Wigner map



A bit of history

Full description (End of WW?2) :

Figure 3 - Hildebrand Groenewold (1910 - Figure 4 - Jose Enrique Moyal (1910 - 1998)
1996)

Creation in parallel of the same theory of phase space quantum mechanics
gathering Weyl quantization and Wigner map

Wigner-Weyl transform
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Opposition :

Figure 5 - Paul Adrien Maurice Dirac
(1902-1984)

"I think it is obvious that there cannot
be any distribution function F'(p, q)
which would give correctly the mean

value of any f(p, q) ..." (1945)

E. Wigner did it in 1932
(Wigner = Dirac's brother-in-law)

Never changed opinion

“[vN density operator] existence is
rather surprising in view of the fact
that phase space has no meaning in
quantum mechanics, there being no
possibility of assigning numerical
values simultaneously to the q's and
p's.”
"I think your kind of work would be
valuable only if you can putitin a very

neat form.” 2



Reminder of classical mechanics

System described by an Hamiltonian :

H(z,p)

Time evolution :

dQ2
= —{Q,H
dt { ’ }

Quantum-classical correspondence :

{a}N[’]

Classical-quantum difference?

Take :
2 2
p1 b3
H=—+-—=+V(xy,
o + o + V(wy,25)
Then:
dxyp P 1%
by 1, OV
dt m O0xqy
= Doy + T1Do

No supplementary information
Phase space variables remain

factorized



Weyl-Wigner transform

Phase-point operators :

A(w,p):/Rdye}pr|$+g><x_y’

2
Hilbert space L?(IR) Phase space I'
AP <~
operators Q(Z, D) weyl symbols Q- (2, p)
Weyl quantization Wigner transform

O(%.9) ://W dedpQu (2, p)Ale,p)  Quy(a,p) = 5o Tr (A3, 5) Al )

Properties for a good transform:

Tr(fi(x,p)) =1, Tr(/i(ap)fi(x’,ﬂ)) =27hd(x —2")o(p—p’)



Weyl-Wigner transform

Examples:

1 .5 . 1
n:§(x2—|—p2—l) = nW:§($2+p2—1)
IR ih
rp — 1’p+5

Easier transform : Bopp operators

th— ih—
r— x4+ (9 ,D—p— 8

h — 0 : recovery of the classical limit

Respect of commutation relations :

- (0 0 22 (o) e ) -
HPI=AT 2 dp Py o P9 oz) \" 2 dp -



Generalization to many particles

Phase-point operators :

(X)z

Z’p’L
1=1
Weyl quantization Wigner transform
~ ~ 1 Ay R
Q(x,p) = // dxdp Qy (x, p)A(X, ) Qyy(z,p) = )N Tr <Q(X7P)A(X7P)>
]RZ

Projection properties :

1 S
M/dp] A(X p) ]| & (@A 'L7pz ) )
1 N
27Th dw A(X p ‘p] p]‘ ® ® l?pl

itj



Hilbert space Phase space

—

Density matrix p wigner function W (z, p)

W =g [0 (o e 3)

Important properties :

/d:):dp W(x,p) =Tr(p) =1
/ dp Wz, p) = {zldla), / de Wz, p) = (pllp)

Integration measure in phase space :

() = [ dodp Wiz, p) 0 (0.1)



Example : Harmonic Oscillator

> Sn g~ §

0 W = — ¢ (@%+p?)
p = [0)0] = ﬂh

]- 2 2
p=1Y1] = W =——e @1 -2 +p?))

7h
p=la)a] = W = iﬁe*((l‘*\@m(a)?+<pf\@3(a)>2>
T

. - . 1 .
Uncertainty principle : 0,0, = 5 for Gaussian states
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Dynamics

Hilbert space Phase space

Heisenberg equation Moyal equation

AQ i oa dQdy, @

= Z — = —{{Hy,

i h[H,Q] a h{{ w Qw

e
Liouville-von Neumann Liouville-von Neumann-Wigner
equation equation

dp i ~ dw i

ap _ v — = _{{W,H

Vo] o = 5 LW )

2 . h e —
{{4,B}) = - Asin (5 (3,0, - apaz)) B
Classical limit = Classical mechanics

{{A, B}} = {4, B} + 0(h?)

11



Truncated Wigner Approximation

Let: .
A= vz
2m
Quantum phase space : Classical phase space :
dp? 3 dp?
—— = —9Va?p? + —Vh? — = 9V x?p?
dt SR dt P

Weyl symbols do not factorize

4

Quantum part in the equation of

motion

Truncated Wigner Approximation
Neglect the quantum part

12



Truncated Wigner Approximation

Then: dWw
— ={W,H
dt { ’ W}
=141 Liouville equation!

Conservation of the volume in phase space along trajectories

() = [ drdp WG 0),0(0), ) (2.

Sampling Classical evolution Statistical average

13



Truncated Wigner Approximation

Exact for harmonic oscillator

14



Truncated Wigner Approximation

Anharmonic oscillator

V(z) = a® + 2?2

S~
-
7
-1 N Ve
N /
\ Ve
ok \ //
\ -
~ e — —
I . \ \ \ \
0 1 2 3 4 5
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Truncated Wigner Approx

Anharmonic oscillator

V(z) = 0.123 + 422

16



Truncated Wigner Approximation

Quartic potential

V(x) = 0.005z* — 322
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Truncated Wigner Approximation

V(x) = 0.1z" - 527 — 18z

Quartic potential

V(x) =0.12* — 52 — 18z

0.5 |
0.4
03
0.2 -

0.1 -

Wave Packet fraction in the right well

0.0 |

Time 18



Quantum State Tomograph

Reconstruction of the density matrix/Wigner function :

+ Measurements on an ensemble of + Easy for discrete systems
identical quantum states + Hard for continuous systems
+ Measured operators must form a (homodyne tomography)

basis on the Hilbert space

Example : Two-level system

.1 [ 1+s, s,—1is
P=3

Y
Sy +1is, 1—s,

Single-qubit Pauli measurements : z measurement then H gate and x
measurement then P+H gates and y measurement
Use : quantum computing, quantum information theory (determine actual

state of quibts), quantum optics (state of signals) 19



Quantum State Tomography

Integration of 1 over any line ax + Bp = distribution for oz + Bp

Cannot measure over usual phase space lines in experiments...

4

Measurements over rotated directions = W (q, 6)

4

Radon transform = W(q, p)

4

Weyl quantization = p




Quantum State Tomography

Figure 6 - Experimental reconstruction of a Figure 7 - Experimental reconstruction of
classical-like coherent state of a harmonic the first excited energy eigenstate of a
oscillator [3] harmonic oscillator [3]

21



A unique phase space?

Normal order af@ = Glauber-Sudarshan P distribution
* 1 * ~ igal jipa\ ,—if*a*—ifa
P(a,a):ﬁ dgdps Tr(pe e )e
Anti-normal order aa’ = Husimi ( distribution
* 1 * ~ iBa ipral) —ifat—ifa
Qo) = — [ dpdp’ Tr(pe e )e
T
symmetric order a'a 4+ aa’ = wigner W distribution

1 ~ FRALIR*A ok % s
W(a, Oé*) = p /dﬁdﬂ* Tr (pelﬁa-Hﬁ aT) e—zﬁ a*—ifa

22



And discrete systems?

still an open question

A phase space is easily defined in dimension N :

(¢,p) € [0,N —1]?

From discrete position and momentum basis :

1 N1
e |0, N i e NP g
9)» ¢ € [0, N —1], =N ; 9)
4 o . . . .
Problem : the transform is not unique T 3 e e e e s
forall N p o2

23




A powerful framework to :

+ Understand quantum-classical correspondence
+ Compute quantum dynamics

+ Determine the state of a system

A lot of links with Path Integrals!

Still needs development for the discrete phase space

Thank you for your attention!
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