Geometry for Quantum Science Group ITI Quantum Science and Nanomaterials University of Strasbourg

Quantisation and Path Integrals

Loris DELAFOSSE

May 28, 2025

1 The end of the classical world

- 2 Methods of quantisation
- B Feynman's path integral
- 4 The relativistic path integral

- Atomic spectra
- Black body radiation
- Photoelectric effect

ightarrow from continuous to discrete observables.

Quantum numbers: adiabatic invariants of quantised systems.

Bohr-Sommerfeld rule

Let q be a periodic coordinate with conjugate momentum p. Then there is a quantum number n such that

$$\oint p \, \mathrm{d}q = nh \tag{1}$$

where h is Planck's constant (the quantum of action).

 \longrightarrow from dynamics to statics.

[picture of phase space]

Observable in classical physics: function on phase space.

Quantum observable: integral of a classical observable / function of phase space curves.

1 The end of the classical world

Methods of quantisation

B Feynman's path integral

4 The relativistic path integral

The five postulates:

- Superposition principle
- Quantisation principle
- Born's rule
- Spontaneous collapse
- Schrödinger's equation

How do we make sense of 2.?

 \longrightarrow connecting classical to quantum observables.

Formally replace in the Hamiltonian all observables by operators.

Since classical observables are functions of (q_k, p_k) , quantum observables become functions of (\hat{q}_k, \hat{p}_k) (forgetting about spin).

 \rightarrow just describe the algebra of canonical variable operators:

Heisenberg commutation relations

$$\left[\hat{q}_i, \hat{p}_j\right] = i\hbar\delta_{ij} \tag{2}$$

$$\left[\hat{q}_i, \hat{q}_j\right] = 0 \tag{3}$$

$$\left[\hat{p}_i, \hat{p}_j\right] = 0 \tag{4}$$

 \longrightarrow enforces Heisenberg indetermination relations.

More generally:

$$\left[\hat{f},\hat{g}\right] = i\hbar\widehat{\{f,g\}} \tag{5}$$

But...

Groenewold theorem

There is no map from phase space to the space of operators that simultaneously

- **1** sends 1 onto $\hat{\mathbb{I}}$;
- **2** sends q_k onto q_k and p_k onto $i\hbar \frac{\partial}{\partial q_k}$;
- In preserves polynomials;
- I satisfies eqn 5.

Best we can do: only preserve polynomials up to degree 3. \longrightarrow Weyl's transform (tiens tiens).

Leads to **deformation quantization** when generalized to arbitrary Poisson manifolds.

 \longrightarrow Weyl's transform replaced by the Kontsevich quantisation formula.

Physical interpretation becomes awkward

+ Lorentz-covariance not explicit for relativistic theories

+ Heisenberg's indeterminacy: quantum states are not even measurable...

Should we do something *completely different*?

1 The end of the classical world

2 Methods of quantisation

4 The relativistic path integral

From Bohr-Sommerfeld theory:

- quantum states are curves in phase space (paths in physical space);
- quantum observables are functions of phase space curves.

From Young's slits experiment:

- a particle passes through both slits since both paths *interfere*;
- this generalizes to an arbitrary number of slits.

From the correspondence principle:

• in the classical limit, there is only one path that counts.

The sum-over-paths picture

What is the probability to propagate from x_0 to y_1 ? to y_2 ?

$$G(x_0, t_0, x_1, t_1) = \langle x_1 | e^{-i(t_1 - t_0)\hat{H}/\hbar} | x_0 \rangle = \sum_n \langle x_1 | E_n \rangle \langle E_n | e^{-i(t_1 - t_0)\hat{H}/\hbar} | x_0 \rangle$$
(6)
$$= \sum_n \psi_n(x_1) \psi_n^*(x_0) e^{-i(t_1 - t_0)E_n/\hbar}$$
(7)

Loris Delafosse

$$G(x_0, t_0, x_1, t_1) = \int_{x(t_0)=x_0}^{x(t_1)=x_1} \mathcal{D}x(t) e^{iS[x]/\hbar}$$
(8)

where we apply the **time-slicing** procedure

$$\mathcal{D}x(t) = \lim_{N \to \infty} e^{-i\pi/4} \sqrt{\frac{m}{2\pi\hbar\epsilon}} \prod_{n=1}^{N-1} \left[\int dx_n \, e^{-i\pi/4} \sqrt{\frac{m}{2\pi\hbar\epsilon}} \right] \tag{9}$$

with $N = (t_1 - t_0)/\epsilon$

 \longrightarrow classical limit.

$G(x_0, t_0, x_1, t_1)$ is called the **propagator** of the particle.

Where does it come from?

$$i\hbar\frac{\partial}{\partial t}G = HG \tag{10}$$

$$G(x_0, t_0, x_1, t_0) = \delta(x_1 - x_0)$$
(11)

and defining the *retarded propagator* $G_R = G\Theta(t_1 - t_0)$

$$\left(i\hbar\frac{\partial}{\partial t} - H\right)G_R = \delta(x_1 - x_0)\delta(t_1 - t_0)$$
(12)

$$G_R(x_0, t_0, x_1, t_0) = \delta(x_1 - x_0)$$
(13)

 \longrightarrow *G*_{*R*} is the **Green function** associated to Schrödinger's equation.

Let *D* be a linear differential operator. Solve for ϕ the partial differential equation

$$D\phi(x) = j(x). \tag{14}$$

A **Green function** for *D* is any solution of

$$DG(x_0, x) = \delta(x - x_0).$$
 (15)

Green functions theorem

Let G be a Green function for D. Then

$$\phi(x) = \int G(x_0, x) j(x_0) \, \mathrm{d}x_0 \tag{16}$$

is a solution of eqn 14.

Nonrelativistic quantum mechanics = 1D field theory

Generalization to arbitrary quantum field theories

$$G(\varphi, \mathcal{N}) = \int_{\phi|_{\partial \mathcal{N}} = \varphi} \mathcal{D}\phi(x) e^{iS[\phi]/\hbar}$$
(17)

with \mathcal{N} an arbitrary spacetime domain with φ a field on $\partial \mathcal{N}$.

 \longrightarrow explicit Lorentz-covariance.

However, quantization and unitarity are not explicit anymore.

 $Time \longrightarrow Temperature.$

Partition function

$$Z(\beta) = \operatorname{Tr} e^{-\beta \hat{H}} = \int dx \, \langle x | e^{-\beta \hat{H}} | x \rangle = \oint_{t_1 - t_0 = -i\hbar\beta} \mathcal{D}x(t) e^{iS[x]/\hbar}$$
(18)

then

$$\left\langle \hat{O} \right\rangle_{\beta} = \frac{1}{Z(\beta)} \int dx \, \left\langle x | e^{-\beta \hat{H}} \hat{O} | x \right\rangle = \frac{1}{Z(\beta)} \int_{t_1 - t_0 = -i\hbar\beta} dx \, dy \, G(y, t_0, x, t_1) \left\langle y | \hat{O} | x \right\rangle.$$
(19)

1 The end of the classical world

- 2 Methods of quantisation
- B Feynman's path integral
- ④ The relativistic path integral

$$G(x_0, t_0, x_1, t_1) = \sum_n \psi_n(x_1) \psi_n^*(x_0) e^{-i(t_1 - t_0)\hat{E}_n/\hbar}.$$
(20)

Setting $E_0 = 0$ and taking $t_1 \rightarrow -i\infty$ and $t_0 \rightarrow +i\infty$ yields

$$G_{\infty} = \psi_0(x_1)\psi_0^*(x_0) = \langle x_1 | E_0 \rangle \langle E_0 | x_0 \rangle$$
(21)

 \longrightarrow probability amplitude for a particle in the ground state to be at x_0 and x_1 \longrightarrow *field* point of view.

$$\langle 0|\hat{O}|0\rangle = \int_{\mathcal{M}} \mathcal{D}\phi O[\phi] e^{iS[\phi]/\hbar}$$
(22)

on the whole manifols $\mathcal{M} \longrightarrow$ time-ordered product.

Chapman-Kolmogorov equation

$$G(x_0, t_0, x_1, t_1) = \int dx \, G(x_0, t_0, x, t) G(x, t, x_1, t_1)$$
(23)

Sewing law

$$\int_{\Sigma_1 \to \Sigma_2} \mathcal{D}\phi e^{iS[\phi]/\hbar} = \int_{\Sigma'} \mathcal{D}\varphi' \int_{\Sigma_1 \to \Sigma_2}^{\phi|_{\Sigma'} = \varphi'} \mathcal{D}\phi e^{iS[\phi]/\hbar}.$$
 (24)

Equal time canonical anticommutation relations

$$\left\{\psi_{\alpha}(x),\psi_{\beta}^{\dagger}(y)\right\} = \delta^{\alpha\beta}\delta^{(3)}(x-y)$$
(25)

Grassmann variables: Grassman algebra of anticommuting generators $\{\theta_1,\theta_2\}$

$$\theta_1 \theta_2 = -\theta_2 \theta_1 \tag{26}$$

 \longrightarrow each $\psi(x)$ and $\psi^{\dagger}(x)$ for each spacetime point are Grassmann variables.

Nonrelativistic path integral is defined through Wiener measure

 \longrightarrow connection with Schrödinger's equation ensured by the Feynman-Kac formula.

However

Ill defined in general...

- \longrightarrow perturbative quantum field theory
- \longrightarrow functorial field theory.

Acknowledgements

This work is supported by the Interdisciplinary Thematic Institute QMat, as part of the ITI 2021-2028 program of the University of Strasbourg, CNRS and Inserm, and was supported by IdEx Unistra (ANR-10-IDEX-0002), SFRI STRAT'US project (ANR-20-SFRI-0012), and EUR QMAT ANR-17-EURE-0024 under the framework of the French Investments for the Future Program.