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@ The end of the classical world
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% The dark cloud above classical physics

® Atomic spectra
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¢ Black body radiation
e Photoelectric effect
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— from continuous to discrete observables.
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% The Bohr-Sommerfeld rule

Quantum numbers: adiabatic invariants of quantised systems.

Bohr-Sommerfeld rule

Let g be a periodic coordinate with conjugate momentum p. Then there is a
quantum number # such that

j{ pdq = nh 1)

where h is Planck’s constant (the quantum of action).

— from dynamics to statics.
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% Quantum observables

[picture of phase space]
Observable in classical physics: function on phase space.

Quantum observable: integral of a classical observable / function of phase
space curves.
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@ Methods of quantisation
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% Quantisation in the Hilbert space

The five postulates:

® Superposition principle
® Quantisation principle
® Born’s rule

® Spontaneous collapse
@ Schrodinger’s equation

How do we make sense of 2.?
— connecting classical to quantum observables.

Formally replace in the Hamiltonian all observables by operators.
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% Towards Dirac’s quantisation

Since classical observables are functions of (gk, px), quantum observables be-
come functions of (g, pr) (forgetting about spin).

— just describe the algebra of canonical variable operators:

Heisenberg commutation relations

(i, py] = ihd (2)
[d,4)] = 0 @)
[pi-pj] =0 (4)

— enforces Heisenberg indetermination relations.
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% Dirac’s quantisation

More generally:
7.8] = inif.s} ©)
But...

Groenewold theorem

There is no map from phase space to the space of operators that
simultaneously

©® sends 1 onto I;

0.
® sends gi onto gx- and pi onto lha_qk'
©® preserves polynomials;

O satisfies eqn 5.
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% Beyond Dirac’s quantisation

Best we can do: only preserve polynomials up to degree 3.
— Weyl'’s transform (tiens tiens).

Leads to deformation quantization when generalized to arbitrary Poisson
manifolds.
— Weyl’s transform replaced by the Kontsevich quantisation formula.

Physical interpretation becomes awkward
+ Lorentz-covariance not explicit for relativistic theories

+ Heisenberg’s indeterminacy: quantum states are not even measurable...

Should we do something completely different?
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© Feynman’s path integral
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% The sum-over-paths picture

From Bohr-Sommerfeld theory:
¢ quantum states are curves in phase space (paths in physical space);
® quantum observables are functions of phase space curves.

From Young’s slits experiment:
® a particle passes through both slits since both paths interfere;
e this generalizes to an arbitrary number of slits.

From the correspondence principle:
¢ in the classical limit, there is only one path that counts.
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@ The sum—over—paths picture
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What is the probability to propagate from xg to 11? to y,?
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% Definition of the path integral

x(t)=x1 ]
G(x()a tOJ X1, tl) = / Dx(t)els[x]/h (8)
x(to)=xo

where we apply the time-slicing procedure

— T —im /4 —im/4
Dx(t) ng%oe V 27rhe H [/ dxne V 271'716] ©)

with N = (#; — o) /e

— classical limit.
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% Propagators and Green functions

G(xo, fo, x1, 1) is called the propagator of the particle.

Where does it come from?

.0
ih5:G = HG (10)
G(XO, to,X1, to) = 5(X1 - xo) (11)

and defining the retarded propagator Gr = GO(t; — o)

<1h§t - H) GR = 6(x1 - XO)5(t1 — i’o) (12)
GR(JC(), to, X1, t()) = (5(9(1 — XO) (13)

— Gg is the Green function associated to Schrodinger’s equation.

Loris Delafosse 15/24




% Green functions for PDEs

Let D be a linear differential operator. Solve for ¢ the partial differential
equation

Do(x) = j(x). (14)
A Green function for D is any solution of
DG(xg,x) = 6(x — xp). (15)

Green functions theorem
Let G be a Green function for D. Then

o(x) = /G(xo,x)j(xo)dxo (16)

is a solution of eqn 14.
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% Feynman’s field integral

Nonrelativistic quantum mechanics = 1D field theory

Generalization to arbitrary quantum field theories

Glo ) = / Do (x)eSIo1/ 17)
dlan=¢

with A an arbitrary spacetime domain with ¢ a field on ON.
— explicit Lorentz-covariance.

However, quantization and unitarity are not explicit anymore.
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% Quantum-statistical path integral

Time — Temperature.

Partition function

Z(8) = Tre—? / dx (xle~F|x) = 75 Dx(HelH/n (18)
t—to=—1ihp
then

<O>B = Z(lﬁ) /dx (xle=PHOlx) = Z(lﬁ) / dxdy G(y, to, x, 1) (¥Olx) .

H—to=—ikf3
(19)
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O The relativistic path integral
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% Large time limit and expectation values

Glxo, to, x1,t1) = > _ (21} (xg)e (1=)Eu/n, (20)
Setting Eg = 0 and taking t; — —ioco and ¢ty — +ioco yields
Goo = to(x1)¥g (x0) = (x1|Eo) (Eolx0) 21)

— probability amplitude for a particle in the ground state to be at xo and x4
— field point of view.

(0/0/0) = /M DGO[gles191/ 22)

on the whole manifols M — time-ordered product.
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% Sewing law

Chapman-Kolmogorov equation

G(xo,tp,x1,t1) = /de(xo,to7x, HG(x, t,x1,t1) (23)
Sewing law
¢|2’:‘P/
/ DepeSIol/n _ / Dy’ / DepelSIol/n. (24)
21—>Ez l Zl—)ZZ
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% Fermionic integrals

Equal time canonical anticommutation relations
{alx) vhw)} = 5759 (x —y) (25)

Grassmann variables: Grassman algebra of anticommuting generators
{01302}

010, = —0,0; (26)

— each v(x) and v (x) for each spacetime point are Grassmann variables.
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% Problems of the path integral

Nonrelativistic path integral is defined through Wiener measure

— connection with Schrédinger’s equation ensured by the Feynman-Kac
formula.

However
Il defined in general...

— perturbative quantum field theory
— functorial field theory.
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