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• Atomic spectra
• Black body radiation
• Photoelectric effect

−→ from continuous to discrete observables.
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The dark cloud above classical physics
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Quantum numbers: adiabatic invariants of quantised systems.

Bohr-Sommerfeld rule
Let q be a periodic coordinate with conjugate momentum p. Then there is a
quantum number n such that ∮

p dq = nh (1)

where h is Planck’s constant (the quantum of action).

−→ from dynamics to statics.
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The Bohr-Sommerfeld rule
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[picture of phase space]

Observable in classical physics: function on phase space.

Quantum observable: integral of a classical observable / function of phase
space curves.
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Quantum observables

Loris Delafosse 5/24



1 The end of the classical world

2 Methods of quantisation

3 Feynman’s path integral

4 The relativistic path integral

Loris Delafosse 6/24

Contents

Loris Delafosse 6/24



The five postulates:

1 Superposition principle
2 Quantisation principle
3 Born’s rule
4 Spontaneous collapse
5 Schrödinger’s equation

How do we make sense of 2.?
−→ connecting classical to quantum observables.

Formally replace in the Hamiltonian all observables by operators.
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Quantisation in the Hilbert space
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Since classical observables are functions of (qk, pk), quantum observables be-
come functions of (q̂k, p̂k) (forgetting about spin).

−→ just describe the algebra of canonical variable operators:

Heisenberg commutation relations

[
q̂i, p̂j

]
= iℏδij (2)[

q̂i, q̂j
]
= 0 (3)[

p̂i, p̂j
]
= 0 (4)

−→ enforces Heisenberg indetermination relations.
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Towards Dirac’s quantisation
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More generally: [
f̂ , ĝ

]
= iℏ{̂f , g} (5)

But...

Groenewold theorem
There is no map from phase space to the space of operators that
simultaneously

1 sends 1 onto Î;
2 sends qk onto qk· and pk onto iℏ ∂·

∂qk
;

3 preserves polynomials;
4 satisfies eqn 5.
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Dirac’s quantisation
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Best we can do: only preserve polynomials up to degree 3.
−→ Weyl’s transform (tiens tiens).

Leads to deformation quantization when generalized to arbitrary Poisson
manifolds.
−→ Weyl’s transform replaced by the Kontsevich quantisation formula.

Physical interpretation becomes awkward
+ Lorentz-covariance not explicit for relativistic theories
+ Heisenberg’s indeterminacy: quantum states are not even measurable...

Should we do something completely different?
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Beyond Dirac’s quantisation
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From Bohr-Sommerfeld theory:
• quantum states are curves in phase space (paths in physical space);
• quantum observables are functions of phase space curves.

From Young’s slits experiment:
• a particle passes through both slits since both paths interfere;
• this generalizes to an arbitrary number of slits.

From the correspondence principle:
• in the classical limit, there is only one path that counts.
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The sum-over-paths picture
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What is the probability to propagate from x0 to y1? to y2?

G(x0, t0, x1, t1) = ⟨x1|e−i(t1−t0)Ĥ/ℏ|x0⟩ =
∑

n

⟨x1|En⟩ ⟨En|e−i(t1−t0)Ĥ/ℏ|x0⟩ (6)

=
∑

n

ψn(x1)ψ
∗
n(x0)e−i(t1−t0)En/ℏ (7)
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The sum-over-paths picture
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G(x0, t0, x1, t1) =

∫ x(t1)=x1

x(t0)=x0

Dx(t)eiS[x]/ℏ (8)

where we apply the time-slicing procedure

Dx(t) = lim
N→∞

e−iπ/4

√
m

2πℏϵ

N−1∏
n=1

[∫
dxn e−iπ/4

√
m

2πℏϵ

]
(9)

with N = (t1 − t0)/ϵ

−→ classical limit.
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Definition of the path integral
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G(x0, t0, x1, t1) is called the propagator of the particle.

Where does it come from?

iℏ
∂

∂t
G = HG (10)

G(x0, t0, x1, t0) = δ(x1 − x0) (11)

and defining the retarded propagator GR = GΘ(t1 − t0)

(
iℏ
∂

∂t
− H

)
GR = δ(x1 − x0)δ(t1 − t0) (12)

GR(x0, t0, x1, t0) = δ(x1 − x0) (13)

−→ GR is the Green function associated to Schrödinger’s equation.

Loris Delafosse 15/24

Propagators and Green functions
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Let D be a linear differential operator. Solve for ϕ the partial differential
equation

Dϕ(x) = j(x). (14)

A Green function for D is any solution of

DG(x0, x) = δ(x − x0). (15)

Green functions theorem
Let G be a Green function for D. Then

ϕ(x) =
∫

G(x0, x)j(x0)dx0 (16)

is a solution of eqn 14.
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Green functions for PDEs
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Nonrelativistic quantum mechanics = 1D field theory

Generalization to arbitrary quantum field theories

G(φ,N ) =

∫
ϕ|∂N=φ

Dϕ(x)eiS[ϕ]/ℏ (17)

with N an arbitrary spacetime domain with φ a field on ∂N .

−→ explicit Lorentz-covariance.

However, quantization and unitarity are not explicit anymore.
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Feynman’s field integral

Loris Delafosse 17/24



Time −→ Temperature.

Partition function

Z(β) = Tr e−βĤ =

∫
dx ⟨x|e−βĤ|x⟩ =

∮
t1−t0=−iℏβ

Dx(t)eiS[x]/ℏ (18)

then

〈
Ô
〉
β
=

1
Z(β)

∫
dx ⟨x|e−βĤÔ|x⟩ = 1

Z(β)

∫
t1−t0=−iℏβ

dx dy G(y, t0, x, t1) ⟨y|Ô|x⟩ .

(19)
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Quantum-statistical path integral

Loris Delafosse 18/24



1 The end of the classical world

2 Methods of quantisation

3 Feynman’s path integral

4 The relativistic path integral

Loris Delafosse 19/24

Contents

Loris Delafosse 19/24



G(x0, t0, x1, t1) =
∑

n

ψn(x1)ψ
∗
n(x0)e−i(t1−t0)Ên/ℏ. (20)

Setting E0 = 0 and taking t1 → −i∞ and t0 → +i∞ yields

G∞ = ψ0(x1)ψ
∗
0 (x0) = ⟨x1|E0⟩ ⟨E0|x0⟩ (21)

−→ probability amplitude for a particle in the ground state to be at x0 and x1
−→ field point of view.

⟨0|Ô|0⟩ =
∫
M

DϕO[ϕ]eiS[ϕ]/ℏ (22)

on the whole manifols M −→ time-ordered product.
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Large time limit and expectation values
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Chapman-Kolmogorov equation

G(x0, t0, x1, t1) =

∫
dx G(x0, t0, x, t)G(x, t, x1, t1) (23)

Sewing law

∫
Σ1→Σ2

DϕeiS[ϕ]/ℏ =

∫
Σ′

Dφ′

ϕ|Σ′=φ′∫
Σ1→Σ2

DϕeiS[ϕ]/ℏ. (24)
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Sewing law
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Equal time canonical anticommutation relations

{
ψα(x), ψ

†
β(y)

}
= δαβδ(3)(x − y) (25)

Grassmann variables: Grassman algebra of anticommuting generators
{θ1, θ2}

θ1θ2 = −θ2θ1 (26)

−→ each ψ(x) and ψ†(x) for each spacetime point are Grassmann variables.
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Fermionic integrals
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Nonrelativistic path integral is defined through Wiener measure

−→ connection with Schrödinger’s equation ensured by the Feynman-Kac
formula.

However

Ill defined in general...
−→ perturbative quantum field theory
−→ functorial field theory.
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Problems of the path integral
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